Essential Oil of *Juniperus formosana* **Hayata Leaves from China**

Robert P. Adams*
Plant Biotechnology Center, Baylor University
Box 669, Gruver, TX 79040 USA

Shao-Zhen Zhang and Ge-Lin Chu Institute of Botany, Northwest Normal University Lanzhou, Gansu 730070, China

Received: February 1995

ABSTRACT: The leaf oil of *Juniperus formosana* of Chinese origin was analyzed by GC/MS. It was found to contain more than 70 components, although most of them were present in amounts of less than 2%. The oil is dominated by α -pinene (47.7%), with lesser amounts of myrcene (7.2%), limonene (4.0%), β -pinene (2.9%), γ -cadinene (2.4%) and germacrene D (2.3%).

KEY WORD INDEX: *Juniperus formosana*, Cupressaceae, essential oil composition, α -pinene.

PLANT NAME: Juniperus formosana Hayata, common name: Ci-bai, Taiwan juniper.

SOURCE: Foliage was collected near Jone, Gansu (R. P. Adams, 6772-6774) and Lazikou (R. P. Adams, 6792). Voucher specimens are deposited at BAYLU! and the Herbarium, Northwest Normal University.

PLANT PART: Fresh leaves were steam distilled in a circulatory Clevenger-type apparatus (1) for 2 h to produce a clear oil with yields (g/g oven dry leaves) ranging from 0.94% to 1.33%.

PREVIOUS WORK: Several papers report on wood oil components (2-5). There are no known reports on the leaf oil of *J. formosana* from China.

PRESENT WORK: GC/MS was accomplished on a Finnigan Ion Trap 800 using a DB-5 column and the compounds identified by combined retention times and mass spectral data (6). Table I shows the composition of the oil of *J. formosana*. The oil is dominated by α -pinene (47.7%), with lesser amounts of myrcene, limonene,

^{*}Address for correspondence

Table I. Composition of the leaf essential oil of Juniperus formosana from China

KI	Compound F	Percentage	KI	Compound Percer	ntage
854	(E)-2-hexenal	0.2	1217	trans-carveol	0.1
926	tricyclene	0.1	1220	endo-fenchyl acetate	0.2
931	α-thujene	t	1228	citronellol	0.4
939	α-pinene	47.7	1235	myrtenyl acetate	0.3
953	camphene	0.6	1252	piperitone	0.6
957	thuja-2,4(10)-diene	0.1	1255	geraniol	0.2
967	verbenene	1.5	1262	unknown	1.2
976	sabinene	0.2	1285	bornyl acetate	1.6
980	β-pinene	2.9	1292	unknown (isomer of 1262)	1.4
991	myrcene	7.2	1350	α-terpinyl acetate	0.2
1001	δ-2-carene	0.8	1376	α-copaene	0.2
1005	α-phellandrene	1.2	1383	geranyl acetate	0.2
1018	α -terpinene	t	1418	(E)-caryophyllene	1.0
1026	p-cymene	0.9	1454	α-humulene	0.6
1031	limonene	4.0	1458	(E)-β-farnesene	0.2
1031	β-phellandrene	1.4	1477	γ-muurolene	t
1057	pentyl isobutyrate	0.2	1480	germacrene D	2.3
1062	γ-terpinene	0.1	1493	epi-cubebol	t
1065	3-methyl-2-buten-1-	γI,	1495	(E)-methyl isoeugenol	0.2
	acetate*	0.6	1499	α-muurolene	0.2
1088	terpinolene	1.0	1507	sesquiterpene	0.5
1091	2-nonanone	0.1	1513	γ-cadinene	2.4
1095	α-pinene oxide	1.4	1517	sesquiterpene	0.5
1097	ipsenol	0.7	1524	δ-cadinene	0.9
1112	endo-fenchol	0.5	1529	citronellyl butyrate	0.1
1121	cis-p-menth-2-en-1-		1538	α-cadinene	0.1
1125	α-campholenal	0.3	1562	geranyl butyrate	0.5
1139	trans-pinocarveol	0.3	1564	(E)-nerolidol	0.3
1140	cis-verbenol	0.1	1574	germacrene-D-4-ol	0.9
1144	trans-verbenol	0.5	1581	caryophyllene oxide	0.3
1148	camphene hydrate	0.3	1606	humulene epoxide II	0.2
1160	trans-pinocarveol	t	1627	1-epi-cubenol	t
1162	pinocarvone	t	1640	epi-α-cadinol (=T-cadinol)	1.6
1165	borneol	0.4	1645	α-muurolol (=torreyol)	0.2
1173	cis-pinocamphone	t	1652	α-eudesmol	t
1177	terpinen-4-ol	0.5	1653	α -cadinol	1.1
1183	p-cymen-8-ol	0.1	1722	(E,E)-farnesol	0.7
1189	α-terpineol	0.6	1989	manoyl oxide	t
1194	myrtenol	0.2	2054	abietatriene	t
1204	verbenone	0.1	2080	abietadiene	t

KI = Kovats Index on DB-5(=SE54) column; *tentatively identified; t = trace (compositional values less than 0.1%); unidentified components less than 0.5% are not reported

 $\beta\text{-pinene},\ \gamma\text{-cadinene}$ and germacrene D. Mass spectra of the unknown compounds: [ITMS, m/z (rel. int.)]: KI 1262, 41(77), 43(64), 53(12), 68(100), 71(23), 99(20); KI 1292, 41(100), 43(64), 53(14), 69(72), 71(32), 99(24); KI 1507, 41(70), 53(10), 65(11), 79(21), 91(100), 105(16), 119(49), 134(8), 161(4), sesquiterpene; KI 1517, 41(80), 55(14), 71(20), 79(25), 93(100), 108(76), 121(83), 136(27), 161(10), 204(3), sesquiterpene.

ACKNOWLEDGMENTS: Thanks to Guo Shou Jun and Yao Jan for field and lab assistance. This research supported by funds from US NSF grant INT8901632 and a Gansu Provincial Education Community Project.

REFERENCES

- 1. R. P. Adams, Cedar wood oil Analysis and properties. In: Modern Methods of Plant Analysis: Oils and Waxes. Edits. H. F. Linskins and J. F. Jackson, pp 159-173, Springler-Verlag, Berlin (1991).
- 2. Y.-H. Kuo and M.-T. Yu, A new lignan, formosalactone, from the bark of Juniperus formosana Hay. var. concolor Hay. Heterocycles, **36**, 529-535 (1993).
- 3. Y.-T. Kuo, T.-R. Wu, M.-C. Cheng and W. Wang, Five new compounds from the heartwood of Juniperus formosana Hayata. Chem. Pharm. Bull., 38, 3195-3201 (1990).
- 4. M. Yatagai and T. Takahashi, Evaluation of essential oil producing conifers. Biomasu Henkan Keikaku Kenkyu Hokoku, 9, 3-30 (1988).
- 5. Y.-H. Kuo, W.-C. Chen and T.-R. Wu, A new lignan, formosanol, from Juniperus formosana. J. Chin. Chem. Soc. (Taipei), 32, 377-379 (1985).
- R. P. Adams, Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic Press, NY (1989).