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Abstract

Hundreds of plant mitogenomes have been sequenced from angiosperms, but relatively few mitogenomes are available
from its sister lineage, gymnosperms. To examine mitogenomic diversity among extant gymnosperms, we generated draft
mitogenomes from 11 diverse species and compared them with four previously published mitogenomes. Examined
mitogenomes from Pinaceae and cycads retained all 41 protein genes and 26 introns present in the common ancestor
of seed plants, whereas gnetophyte and cupressophyte mitogenomes experienced extensive gene and intron loss. In
Pinaceae and cupressophyte mitogenomes, an unprecedented number of exons are distantly dispersed, requiring trans-
splicing of 50–70% of mitochondrial introns to generate mature transcripts. RNAseq data confirm trans-splicing of these
dispersed exons in Pinus. The prevalence of trans-splicing in vascular plant lineages with recombinogenic mitogenomes
suggests that genomic rearrangement is the primary cause of shifts from cis- to trans-splicing in plant mitochondria.
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Across eukaryotes, the mitochondrial genome (mitogenome)
exhibits an amazing diversity of genomic architectures, with
large variations in size, structure, gene and intron content,
and nucleotide composition (Smith and Keeling 2015). The
mitogenomes of land plants encapsulate much of this archi-
tectural extremism. Land plants tend to have 30–40 mito-
chondrial protein genes, although coding content can range
from<20 protein genes in mistletoe (Skippington et al. 2015)
to >50 protein genes (including intron-encoded endonu-
cleases and maturases) in some liverworts (Mower et al.
2012). Additionally, plant mitochondrial transcripts require
extensive posttranscriptional modifications, including intron
splicing and RNA editing, to manage the variable numbers of
introns and RNA edit sites distributed in lineage-specific pat-
terns across land plants (Bonen 2012; Mower et al. 2012;
Ichinose and Sugita 2016). Most plant mitochondrial introns
are classified as group II introns, whereas a minority are clas-
sified as group I, based on differences in structure and splicing
mechanism (Bonen 2012).

Plant mitochondrial introns are typically removed by cis-
splicing, whereby the exons to be joined are within the same
primary transcript, separated by the intron to be removed.
Trans-splicing, which describes the joining of exons from dis-
tinct transcripts, is much less common, although examples
exist for group I and II introns from eukaryotic organelles and
prokaryotes (e.g., Malek and Knoop 1998; Burger et al. 2009;
Glanz and Kück 2009; Grewe et al. 2009; Pombert et al. 2013;

LaRoche-Johnston et al. 2018). Among land plants, mitochon-
drial trans-splicing is absent from nonvascular plants but has
evolved several times in particular lineages of vascular plants,
most abundantly in angiosperms. Trans-splicing is typically
required for five or six (ca. 25%) angiosperm mitochondrial
introns, of which five (nad1i394, nad1i669, nad2i542,
nad5i1455, nad5i1477) likely became trans-spliced in the
seed plant common ancestor by fragmentation of a cis-
spliced arrangement (Malek and Knoop 1998; Groth-
Malonek et al. 2004; Guo et al. 2016). Additional shifts from
cis- to trans-splicing are more restricted in scope among vas-
cular plants, such as atp9i21 and cobi787 in the lycophyte
Selaginella moellendorffii (Hecht et al. 2011) and cox2i691 in
the gymnosperm Welwitschia mirabilis (Guo et al. 2016).
Some introns have experienced repeated, independent tran-
sitions from cis- to trans-splicing, including nad1i728 in di-
verse seed plants (Qiu and Palmer 2004; Guo et al. 2016) and
cox2i373 in some Allium species (Kim and Yoon 2010) and
S. moellendorffii (Hecht et al. 2011).

Hundreds of mitogenomes have been sequenced from
angiosperms, but many fewer are available from gymno-
sperms, the sister lineage to angiosperms. Gymnosperms
comprise �1,000 species divided into Pinaceae (conifers I),
cupressophytes (conifers II), gnetophytes, cycads, and ginkgo,
and relationships among these groups continue to be con-
founded by the uncertain placement of gnetophytes, which
varies depending on data set and methodology used (Ran
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et al. 2018; One Thousand Plant Transcriptomes 2019).
Complete mitogenomes have been sequenced for a cycad
(Cycas taitungensis, Chaw et al. 2008), a gnetophyte
(W. mirabilis, Guo et al. 2016) and the ginkgo tree (Ginkgo
biloba, Guo et al. 2016), and a draft mitogenome sequence is
available from Picea glauca in Pinaceae (Jackman et al. 2016).
Notably, there is an increased requirement for trans-splicing
of seven introns in the W. mirabilis mitogenome (Guo et al.
2016), and our preliminary examination of exon distribution
in the P. glauca mitochondrial assembly suggested an even
greater requirement for trans-splicing. This raised the strong
possibility that trans-splicing is more prevalent in particular
gymnosperms in comparison to all other land plants.

Results
To assess the diversity of gene and intron content and the
relative frequency of cis- versus trans-splicing among gymno-
sperm mitochondria, draft mitogenomes (supplementary ta-
ble S1, Supplementary Material online) were assembled from
five cupressophytes (Araucaria heterophylla, Cupressus sem-
pervirens, Hesperocyparis glabra, Podocarpus macrophyllus,
Taxus baccata), three Pinaceae species (Abies sibirica, Picea
abies, Pinus strobus), two cycads (Ceratozamia hildae, Zamia
integrifolia), and one gnetophyte (Gnetum gnemon).
Estimated mitogenomic sizes range from <500 kb in
T. baccata and cycads to >6 Mb in P. strobus and P. abies,
although the true mitogenomic size is likely to be higher due
to unresolved repeats in these draft assemblies. GC% ranges
from<45% in P. strobus and P. abies to>50% in Cupressales,
which includes C. sempervirens, H. glabra, T. baccata.
Comparison of mitochondrial gene and intron content
among these 11 draft mitogenomes and four previously pub-
lished mitogenomes (from C. taitungensis, G. biloba, P. glauca,
and W. mirabilis) revealed widespread retention in some lin-
eages and extensive loss in others (fig. 1). Mitogenomes from
three cycads and four Pinaceae species contain the 41
protein-coding genes and 26 introns inferred to be present
in the common ancestor of seed plants (Guo et al. 2016), and
G. biloba mitogenome content is similar except for loss of the
rps10 intron. By contrast, cupressophytes have lost 8–9 genes
and 11–12 introns, whereas gnetophytes have lost 12 genes
and either 4 (G. gnemon) or 16 (W. mirabilis) introns.

Moreover, there is extensive variation in the cis- versus
trans-splicing arrangements of many mitochondrial introns
(fig. 1B). In ginkgo and cycads, trans-splicing is required for
just the five aforementioned introns (nad1i394, nad1i669,
nad2i542, nad5i1455, nad5i1477) that shifted to a trans config-
uration in the seed plant ancestor. In other gymnosperm lin-
eages, however, we discovered a broader requirement for
mitochondrial trans-splicing, affecting in total 7 gnetophyte
introns, 10–11 cupressophyte introns, and 13 Pinaceae introns.
Overall, mitochondrial trans-splicing is required for 50% of
Pinaceae introns and 70% of introns from cupressophytes
and W. mirabilis, but only for 20% of introns in ginkgo and
cycads. Importantly, no repeat-mediated recombinant prod-
ucts were detected close to the intron breakpoints of any trans-
spliced intron in any assembly, indicating the absence of

alternative mitogenomic arrangements containing a cis-spliced
version of these introns. Furthermore, de novo assembly and
read mapping of RNAseq data demonstrated that Pinus taeda
mitochondrial exons are correctly spliced for all 10 intron-
containing genes, verifying a trans-splicing mechanism to re-
move 13 of the 26 introns (fig. 2). Correct splicing was also
demonstrated for all cis- and trans-spliced introns from
G. biloba and W. mirabilis (Guo et al. 2016; Fan et al. 2019).

Of the 15 mitochondrial introns that are trans-spliced in at
least one gymnosperm, eight have only been identified from
gymnosperms, including cox2i691 in Pinaceae and
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27 genes ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
rpl2 − − − − − − − ● ● ● ● ● ● ● ● ● ● ● ●
rpl5 ● ● ● ● ● − − ● ● ● ● ● ● ● ● ● ● ● ●
rpl10 − ψ − − − ● ● ● ● ● ● ● ● ● ● − ● ● ●
rpl16 ● ● ● ● ● ψ ψ ● ● ● ● ● ● ● ● ● ● ● ●
rps1 − − − − − − − ● ● ● ● ● ● ● ● ● ● ● ●
rps2 − − − − − − − ● ● ● ● ● ● ● ● ● ● ● −
rps7 ● ● ● ●
rps10 ● ● ● ●
rps11 − − − − − − − ● ● ● ● ● ● ● ● ● ● ● −
rps13 ● ● ● ● ● − − ● ● ● ● ● ● ● ● ● ● ● ●
rps14 − − − − − − − ● ● ● ● ● ● ● ● ● ● ● ●
rps19 ● ● ● ● ● ψ − ● ● ● ● ● ● ● ● ● ● ● ●
sdh3 ● ● − − − − − ● ● ● ● ● ● ● ● ● ● − ●
sdh4 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ψ ●

Introns
ccmFci829 − − − − − ● − ● ● ● ● ● ● ● ● ● ● ● ●
cox2i373 θ θ θ θ θ − − θ θ θ θ ● ● ● ● ● ● ● ●
cox2i691 − − − − − θ θ θ θ θ θ ● ● ● ● ● ● ● ●
nad1i394 θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
nad1i477 − − − − − ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad1i669 θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
nad1i728 θ θ θ θ θ θ θ θ θ θ θ ● ● ● ● θ ● θ ●
nad2i156 − − − − − ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad2i542 θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
nad2i709 ● ● ● ● ● ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad2i1282 θ θ θ θ θ ● − θ θ θ θ ● ● ● ● ● ● ● ●
nad4i461 θ θ θ θ θ ● ● θ θ θ θ ● ● ● ● ● ● ● ●
nad4i976 θ θ θ θ θ ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad4i1399 θ θ θ θ θ ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad5i230 ● ● ● ● ● ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad5i1455 θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
nad5i1477 θ − θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
nad5i1872 ● ● ● ● ● ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad7i140 − − − − − − − ● ● ● ● ● ● ● ● ● ● ● ●
nad7i209 ● ● ● ● ● ● ● θ θ θ θ ● ● ● ● ● ● ● ●
nad7i676 − − − − − ● − ● ● ● ● ● ● ● ● ● ● ● ●
nad7i917 − − − − − ● ● θ θ θ θ ● ● ● ● ● ● ● ●
rpl2i846 x x x x x x x θ θ θ θ ● ● ● ● ● ● ● ●
rps3i74 − − − − − ● − ● ● ● ● ● ● ● ● ● ● ● ●
rps3i257 − − − − − ● − ● ● ● ● ● ● ● ● − − − −
rps10i235 x x x x x x x ● ● ● ● − ● ● ● ● ● ● ●
total cis (●) 4 4 4 4 4 15 3 13 13 13 13 20 21 21 21 19 20 19 20

6 5 6 5total trans (θ) 11 10 11 11 11 7 7 13 13 13 13 5 5 5 5

total genes (●) 33 33 32 32 32 29 29 41 41 41 41 41 41 41 41 40 41 39 39
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FIG. 1. Mitochondrial gene content and intron content among gym-
nosperms and selected angiosperms. Species relationships were taken
from the One Thousand Transcriptomes Project Initiative (2019).
Gnet., gnetophytes; Angio., angiosperms. (A) Protein gene content.
“�” indicates presence of an intact gene, “W” indicates a pseudogene,
and “–” indicates gene loss. The 27 genes present in all sampled spe-
cies include atp1, atp4, atp6, atp8, atp9, ccmB, ccmC, ccmFc, ccmFn,
cob, cox1, cox2, cox3, matR, mttB, nad1, nad2, nad3, nad4, nad4L, nad5,
nad6, nad7, nad9, rps3, rps4, and rps12. (B) Intron content. “�” and
“�” indicate presence of cis- and trans-spliced introns, respectively.
Intron losses are shaded gray. “–” indicates intron loss from an intact
gene, and “x” indicates intron loss due to gene loss.
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gnetophytes, nad2i1282 and nad4i461 in Pinaceae and
cupressophytes, nad4i976 and nad4i1399 in cupressophytes,
and nad7i209, nad7i917, and rpl2i846 in Pinaceae. For
cox2i373, however, the shift to trans-splicing in cupresso-
phytes and Pinaceae has also occurred independently in
Allium (Kim and Yoon 2010) and S. moellendorffii (Hecht
et al. 2011). Likewise, the nad1i728 intron, which became
trans-spliced numerous times in angiosperms (Qiu and
Palmer 2004), has shifted to trans-splicing in cupressophytes,
gnetophytes and Pinaceae.

Trans-splicing of nad1i728 is particularly interesting be-
cause this intron contains the matR gene, encoding a matur-
ase that assists in intron splicing (Sultan et al. 2016). In
angiosperms, when the intron became trans-spliced, matR
remained associated with either the upstream or downstream
exon, depending on the position of the intron break (Qiu and
Palmer 2004). In Pinaceae and P. macrophyllus, the intron
break occurred upstream of matR, which remained adjacent
to the downstream exon, as exemplified by P. abies (fig. 3). In
gnetophytes and the other four cupressophytes, however,
intron breaks occurred both upstream and downstream of
matR, such that matR is no longer near either exon, although
matR is still flanked on both sides by fragments of the trans-
spliced intron, as previously described for W. mirabilis (Guo

et al. 2016) and shown here for A. heterophylla (fig. 3). Thus,
nad1i728 may function as a tripartite trans-spliced intron in
these gymnosperms, which was previously observed for mi-
tochondrial intron nad5i1477 in Oenothera berteriana
(Knoop et al. 1997) and a plastid intron in Chlamydomonas
reinhardtii (Goldschmidt-Clermont et al. 1991).

Discussion
Here, we detailed extensive variation in mitochondrial gene
and intron content among gymnosperm lineages, and uncov-
ered the highest requirement for trans-splicing among all
plant and green algal organellar genomes. Indeed, such high
levels of trans-splicing (using distinct mechanisms) are other-
wise known from diplonemid mitogenomes (Marande and
Burger 2007) and nuclear genomes of some dinoflagellates,
euglenozoans, and nematodes (Lei et al. 2016).
Unambiguously reconstructing the precise evolutionary his-
tory of gymnosperm gene losses, intron losses, and cis- to
trans-splicing shifts is difficult due to the uncertain phyloge-
netic position of gnetophytes; nevertheless, parsimony-based
reconstructions indicated many independent or convergent
events of gene and intron loss and cis- to trans-splicing shift-
ing irrespective of phylogeny (fig. 4). Of particular note is the
inference of loss of one or more trans-spliced introns,
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plotted and shaded in gray.
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including nad5i1477 from Podocarpus and (depending on
reconstruction) cox2i373 from gnetophytes or cox2i691
from cupressophytes. Across eukaryotes, loss of a trans-
spliced organellar intron is unusual, with only two other
examples known (Grewe et al. 2016; Fu�cı́ková et al. 2019).

Regardless of phylogeny, convergent evolution must be
inferred for the shared losses of sdh3 and six introns among
some (but not all) cupressophytes and gnetophytes.
Furthermore, depending on phylogenetic relationships, con-
vergent evolution must also be invoked to explain the gene
and intron losses shared among all cupressophytes and gne-
tophytes and/or the cis- to trans-splicing changes shared
among all cupressophytes and Pinaceae. More generally, con-
vergent evolution is rampant in other vascular plant mitoge-
nomes for various gene and intron losses and cis- to trans-
splicing shifts (Joly et al. 2001; Adams et al. 2002; Qiu and
Palmer 2004; Guo et al. 2017). Collectively, these findings
suggest that a simple parsimony-based inference scheme is

likely to underestimate the true number of evolutionary
changes in vascular plant mitogenomes.

The evolution of trans-spliced introns from cis-spliced
ancestors presumably results from DNA rearrangement,
most likely driven by mutagenic repair of double-strand
breaks or recombination at small repeats (Qiu and Palmer
2004; Bonen 2012). At a broad level, shifts to trans-splicing
correlate well with relative rearrangement rates. Angiosperm
mitogenomes are notorious for their frequent rearrangement
(Palmer and Herbon 1988; Woloszynska 2010), and until this
study, angiosperms were notable among land plants for hav-
ing the highest number of trans-spliced introns. In stark con-
trast, no trans-splicing has yet been detected in any
nonvascular plant mitogenomes, which tend to be much
less rearranged (Wang et al. 2009; Xue et al. 2010; Liu et al.
2014; Dong et al. 2018; Myszczy�nski et al. 2018).

The sparser data from vascular plants other than angio-
sperms also support a correlation between trans-splicing and
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rearrangement. No mitochondrial trans-spliced introns were
identified in two ferns or in the lycophyte Phlegmariurus
squarrosus, which have limited rearrangement (Liu et al.
2012; Guo et al. 2017), whereas S. moellendorffii has four
trans-spliced introns and an extraordinarily recombinogenic
mitogenome (Hecht et al. 2011). Subsequent to their diver-
gence from the seed plant ancestor, ginkgo and cycads have
not acquired any new trans-spliced introns, and their mito-
genomes are much less rearranged than other seed plants,
whereas W. mirabilis appears more recombinogenic and has
acquired two additional trans-spliced introns (Guo et al.
2016). Collectively, these results strongly support the role of
DNA rearrangement in causing cis- to trans-splicing shifts
during plant evolution. The increased mitochondrial trans-
splicing in cupressophytes and Pinaceae predicts that these
mitogenomes will be more extensively rearranged relative to
other gymnosperms. Indeed, several as-yet unpublished
Pinaceae mitogenomes suggest extraordinary amounts of
rearrangement (Jackman et al. 2019; Sullivan et al. 2019), cor-
relating with the many trans-spliced introns arising in this
family.

Materials and Methods
Collection and sequencing details for all newly evaluated
plants are provided in supplementary table S2,
Supplementary Material online. Briefly, mitochondria-
enriched DNA was isolated from A. heterophylla and
P. strobus as described previously (Mower et al. 2010). Total
cellular DNA was isolated from C. hildae, C. sempervirens,
G. gnemon, H. glabra, P. macrophyllus, and Z. integrifolia using
a simplified CTAB procedure (Doyle and Doyle 1987). For
each species, leaves/needles were sampled from a single indi-
vidual. Araucaria heterophylla, P. strobus, and P. macrophyllus
DNAs were sequenced at BGI (Shenzhen, China) on an
Illumina HiSeq 2500 machine. Cupressus sempervirens,
G. gnemon, and H. glabra DNAs were sequenced at the
Center for Genomics and Bioinformatics (Indiana
University, Bloomington, IN) on an Illumina MiSeq machine.
Ceratozamia hildae and Z. integrifolia DNAs were sequenced
at ACGT, INC. (Wheeling, IL) on an Illumina NextSeq 500
machine. Illumina sequencing data were obtained from the
NCBI SRA for A. sibirica, P. abies, and T. baccata.

Illumina reads were assembled with Velvet version 1.203
(Zerbino and Birney 2008) using a range of kmer values and
expected coverage values, as described previously (Guo et al.
2016). Reads were also assembled with SPAdes 3.13
(Bankevich et al. 2012) using a range of kmer values shown
in supplementary table S1, Supplementary Material online, as
described previously (Mower et al. 2019). Mitochondrial
exons and introns were identified by default BlastN homology
searches using C. taitungensis and G. biloba sequences as
queries. Introns were scored as trans-spliced when the intron
was fragmented in the SPAdes and Velvet assemblies, the
flanking exons were not within 5 kb of a contig end in at least
one assembly, and there were no repeats within 5 kb of the
broken intron ends. To identify additional mitochondrial scaf-
folds that lack mitochondrial genes, we first calculated

average mitochondrial GC% and kmer coverage (weighted
by contig length) from all annotated mitochondrial scaffolds
for each species. Scaffolds >1 kb in length were scored as
mitochondrial if GC% was within 3% and kmer coverage
was between one-half and thrice the annotated mitochon-
drial average. Annotated mitochondrial scaffolds were depos-
ited in GenBank under accessions MN965050–MN965384.

Illumina RNAseq reads for P. taeda were obtained from the
NCBI SRA (SRR1200343, SRR1200412, SRR1200414,
SRR1200421, SRR1200424, SRR1200432). RNAseq reads were
assembled using Trinity v2.8.4 (Grabherr et al. 2011) with
default parameters. Reads were mapped onto the assembled
transcripts using Hisat2 aligner version 2.1.0 (Kim et al. 2019).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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